General Approach

In order to fulfil our objectives as outlined above, we undertake the following detailed analysis for each new project we embark on:


db symmetry support and use BREEAM as a guideline for sustainable building practices and embraces local authorities’ environmental requirements and objectives. BREEAM is the Building Research Establishment Environmental Assessment Method. It is the most widely used and robust method available for measuring and demonstrating the environmental performance of buildings.

Energy in buildings

db symmetry are committed to delivering energy efficient, low carbon and cost effective buildings, which we assess through building operation energy usage modelling. This is vital because Buildings are responsible for about half of all carbon dioxide emissions in the UK.

Healthy and productive buildings

db symmetry deliver workspaces designed to provide the most comfortable working conditions by optimising daylight, ventilation, heating and cooling systems.

Renewable Energy

db symmetry fully investigates the use of integrated renewable energy systems on all projects, in order to minimise the erosion of exhaustible materials e.g. fossil fuels.

Sustainable Design

db symmetry consider the following strategies in all new projects:

Reduce CO2 emissions and decrease the use of fossil fuels by

  • employing renewable energy sources wherever possible
  • reducing transport during construction by sourcing materials and components locally
  • implementing facilities to minimise car travel for future employers and clients
  • avoiding mechanical cooling and investing into natural cooling and natural ventilation
  • designing for a maximum use of daylight
  • designing automatic lighting controls and fit low energy and LED lighting throughout the site
  • minimise the use of finite sources and use renewable sustainable elements instead
  • develop a green transport plan in collaboration with local councils

Reduce water usage by

  • implementing rainwater harvesting systems into the building design
  • installing grey water harvesting systems where appropriate
  • installing water efficient fittings, such as low flow taps, low flow showers, automated controls on urinals and dual flush, low flow WCs
  • fitting water meters
  • installing water leak detection systems and monitoring water consumption

Reduce waste by

  • providing recycling facilities during and after construction
  • use recycled components and recycled aggregates wherever possible
  • considering the possibility of creating energy from waste
  • considering off-site manufacture

Increase biodiversity by

  • investigating the ecological value of the site
  • employing an ecologist to assure maintaining or increasing the ecology on the site
  • implementing green or brown roofs to increase biodiversity and help prevent flooding
  • employing flood risk minimisation measures

Reduce pollutants by

  • using non-hazardous healthy building materials with low embodied energy and a good life cycle analysis
  • avoiding toxic materials such as formaldehyde as much as possible
  • installing low NOx heating systems
  • fitting oil interceptors in car parks
  • designing external lighting to minimise light pollution

Create health and well-being by

  • improving the indoor air quality through ventilation and healthy breathable building materials
  • providing thermal comfort by creating temperature controlled environments
  • providing open spaces and green recreational areas for occupants/users
  • providing views out